Update from ASCO & AACR: the latest developments in treatment

We live in an immunotherapy world...

Additional data on combination Ipi/Nivo treatment

Final results of the national AVAST-M trial

Activity of treatments when there are brain metastases

[New checkpoint inhibitors]

Where now for adjuvant therapy?

Overall Survival Results From a Phase III Trial of Nivolumab Combined With Ipilimumab in Treatment-naïve Patients With Advanced Melanoma (CheckMate 067)

ANNUAL

MEETING

2017

WASHINGTON, DC

AAC-R

James Larkin,¹ Vanna Chiarion-Sileni,² Rene Gonzalez,³ Piotr Rutkowski,⁴ Jean-Jacques Grob,⁵ C. Lance Cowey,⁶ Christopher D. Lao,⁷ Dirk Schadendorf,⁸ Pier Francesco Ferrucci,⁹ Michael Smylie,¹⁰ Reinhard Dummer,¹¹ Andrew Hill,¹² John Haanen,¹³ Michele Maio,¹⁴ Grant McArthur,¹⁵ Dana Walker,¹⁶ Linda Rollin,¹⁶ Christine Horak,¹⁶ F. Stephen Hodi,^{17,*} Jedd D. Wolchok^{18,*}

¹Royal Marsden Hospital, London, UK; ²Oncology Institute of Veneto IRCCS, Padua, Italy; ³University of Colorado Cancer Center, Denver, CO, USA; ⁴Maria Sklodowska-Curie Memorial Cancer Center & Institute of Oncology, Warsaw, Poland; ⁵Hospital de la Timone, Marseille, France; ⁶Texas Oncology-Baylor Charles A. Sammons Cancer Center, Dallas, TX, USA; ⁷University of Michigan, Ann Arbor, MI, USA; ⁸Department of Dermatology, University of Essen, Essen, Germany; ⁹European Institute of Oncology, Milan, Italy; ¹⁰Cross Cancer Institute, Alberta, Canada; ¹¹Universitäts Spital, Zurich, Switzerland; ¹²Tasman Oncology Research, QLD, Australia; ¹³Netherlands Cancer Institute, Amsterdam, The Netherlands; ¹⁴University Hospital of Siena, Siena, Italy; ¹⁵Peter MacCallum Cancer Centre, Victoria, Australia; ¹⁶Bristol-Myers Squibb, Princeton, NJ, USA; ¹⁷Dana-Farber Cancer Institute, Boston, MA, USA; ¹⁸Memorial Sloan-Kettering Cancer Center and Weill Cornell Medical College, New York, NY, USA; *Contributed equally to this study.

UK Mercury number 1508UK1700439-01: This presentation is for medical reactive use with HCPs, and can be distributed to HCPs on request. These data were specifically requested for presentation at this meeting.

CheckMate 067: Study Design

Database lock: Sept 13, 2016 (median follow-up ~30 months in both NIVO-containing arms)

Updated Progression-Free Survival

Overall Survival

PFS and OS Subgroup Analyses (All Randomized Patients) Descriptive comparison between NIVO+IPI and NIVO

	Patients		Unstratified Hazard Ratio		Unstratified Hazard Ratio (95% CI)	
Subgroup	NIVO+IPI	NIVO	PFS	OS	PFS	OS
Overall	314	316	0.77	0.89		
<65 years	185	198	0.74	0.81		
≥65 years	129	118	0.82	0.99		
BRAF Mutant	102	98	0.60	0.71		
BRAF Wild-type	212	218	0.86	0.97		
ECOG PS = 0	230	237	0.79	0.91		
ECOG PS = 1	83	78	0.72	0.82		
M0/M1a/M1b	129	132	0.67	0.84		
M1c	185	184	0.83	0.90		
LDH ≤ ULN	199	197	0.72	0.89		
LDH > ULN	114	112	0.79	0.86		
LDH > 2 x ULN	37	37	0.70	0.71		
PD-L1 ≥5%	68	80	0.87	1.05		
PD-L1 <5%	210	208	0.73	0.84		
				T		0 1

OS in Patients with BRAF Wild-type and Mutant Tumors

BRAF Wild-type

BRAF Mutant

OS by Tumor PD-L1 Expression

Safety Summary

With an additional 19 months of follow-up, safety was consistent with the initial report¹

	NIVO+IP' (N=313)		NIVO (N=313)		IPI (N=311)	
Patients reporting event, %	Any Grade	Grade 3-4	Any Grade	Grade 3-4	Any Grade	Grade 3-4
Treatment-related adverse event (AE)	95.8	58.5	86.3	20.8	86.2	27.7
Treatment-related AE leading to discontinuation	39.6	31.0	11.5	7.7	16.1	14.1
Treatment-related death, n (%)	1 (%) 2 (0.1)ª		1 (0.3) ^b		1 (0.3) ^b	

So what does it mean...

The benefits of combination immunotherapy aren't clear

The high chance of shrinking the tumour will be important for some people

Side effects will matter more for others

The hunt for better combinations is on

Adjuvant bevacizumab as treatment for melanoma patients at high risk of recurrence: Final results of the AVAST-M trial

 <u>Pippa G Corrie</u>, Andrea Marshall, Paul D Nathan, Paul Lorigan, Martin Gore, Saad Tahir, Guy Faust, Charles G Kelly, Maria Marples, Sarah J Danson, Ernest Marshall, Stephen J Houston, Ruth E Board, Ashita M Waterston, Jenny P Nobes, Mark Harries, Satish Kumar, Gemma Young, Emily Barker, Janet A Dunn, Mark Middleton Trial funded by Cancer Research UK (grant ref. C7535/A6408 and C2195/A8466) ISRCTN81261306; EudraCT Number: 2006-005505-64

AVAST-M Trial Design

Presented by: Dr Pippa Corrie

Disease-free Interval (DFI)

Overall Survival

OS By BRAF And NRAS Status For Observation Arm Patients

OS By Trial Arm By BRAF/NRAS Status

Impact of Mutant BRAF And NRAS ctDNA On Overall Survival

- ctDNA assessed in plasma of patients whose tumours had either a BRAF or NRAS mutation, using ddPCR
- ctDNA detected in plasma from 19 of 152 patients collected at baseline, within 12 weeks of surgical clearance
 Overall Survival
 Disease Free Interval

So what does it mean...

Adjuvant bevacizumab isn't going to be a useful treatment

Although it delays recurrence it doesn't help people live longer

We may be able to use ctDNA to identify people at very high risk of relapse

BRAF and NRAS mutations were associated with worse outcomes in the observation arm

The interplay between angiogenesis, the mutations in some melanomas and the immune system need more study

Where now for adjuvant therapy?

High dose ipilimumab works but is toxic

Checkmate 238

Randomized, double-blind, phase III study to compare adjuvant NIVO to IPI

EORTC Pembrolizumab Trial

Randomized, double-blind, phase III study to compare adjuvant Pembro to observation

Checkmate 915

Randomized, double-blind, phase III study to compare adjuvant NIVO + IPI or NIVO alone to IPI alone

So what does it mean...

The best adjuvant treatment approach is uncertain

Ipilimumab works, but is toxic and the benefits of using it early versus saving it for later are unclear

Trials to see if PD-1 is an option here are in progress

A new study will launch this month comparing these 2 options with combined Ipi/Nivo

Can we treat brain metastases effectively?

Efficacy and Safety of Nivolumab ♥ Plus Ipilimumab♥ in Patients with Melanoma Metastatic to the Brain: Results of the Phase II Study CheckMate 204

Hussein Tawbi,¹ Peter Forsyth,² Alain Algazi,³ Omid Hamid,⁴ F. Stephen Hodi,⁵ Stergios Moschos,⁶ Nikhil Khushalani,² Rene Gonzalez,⁷ Christopher Lao,⁸ Michael Postow,⁹ Michael B. Atkins,¹⁰ Marc Ernstoff,¹¹ Igor Puzanov,¹¹ Ragini Kudchadkar,¹² Reena Thomas,¹³ Ahmad Tarhini,¹⁴ Joel Jiang,¹⁵ Alexandre Avila,¹⁵ Sheena Demelo,¹⁵ Kim Margolin¹⁶

A Randomized Phase 2 Study of Nivolumab or Nivolumab plus Ipilimumab in Patients with Melanoma Brain Metastases: The Anti-PD1 Brain Collaboration (ABC)

Georgina V. Long, Victoria Atkinson, Alexander M. Menzies, Serigne Lo, Alexander Guminski, Michael P. Brown, Maria Gonzalez, Katrina Diamante, Shahneen Sandhu, Richard A. Scolyer, Louise Emmett, Grant A. McArthur.

 Exclusion criteria included neurological symptoms; steroids > 10 days; WBRT; prior treatment with checkpoint inhibitors; leptomeningeal disease

Response to Treatment – All Patients (N = 75)

	Global	Intracranial	Extracranial
Best overall response, n (%)			
Complete response	4 (5)	16 (21)	5 (7)
Partial response	36 (48)	25 (33)	32 (43)
Stable disease	4 (5)	4 (5)	2 (3)
Progressive disease ^a	18 (24)	18 (24)	16 (21)
Not evaluable ^b	13 (17)	12 (16)	20 (27)
Objective response rate, % (95% CI)	53 (41-65)	55 (43-66)	49 (38-61)
Clinical benefit rate ^c , % (95% Cl)	59 (47-70)	60 (48–71)	52 (40-64)

PFS

Best Intracranial RECIST Response

	A: lpi+Nivo N=26	B: Nivo N=25	C: Nivo [↑] N=16
Intracranial Response, n (%)	11 (42%)	5 (20%)	1 (6%)
CR	4 (15%)	3 (12%)	0
PR	7 (27%)	2 (8%)	1 (6%)
SD	2 (8%)	1 (4%)	4 (25%)
PD	12 (46%)	18 (72%)	11 (69%)
<u>NE*</u>	1 (4%)	1 (4%)	0

Intracranial Progression Free Survival

Manipulating more checkpoints

Oxford Biomedical Research Centre

Thanks for Listening

OCTRU is a UKCRC Registered Clinical Trials Unit OCTRU is a joint venture between the Centre for Statistics in Medicine (CSM) and the Oncology Clinical Trials Office (OCTO) both based at the University of Oxford

UKCRC

Clinical

Registered

Trials Units

Oxford University Hospitals