Adoptive Cell Therapy For Melanoma:
A perspective on Tumour Infiltrating Lymphocyte Therapy

Robert Hawkins
Adoptive Cell Therapy

- **Two basic approaches**
 - Natural T cells
 - Isolated from blood
 - Isolated from tumour
 - Genetically Engineered T cells
 - Engineered from blood lymphocytes
 - TCR based receptors
 - Antibody based chimeric receptor
What is TIL therapy?

- Type of Adoptive Cell Therapy – TILs, CAR-T, TCR
- Tumour Infiltrating Lymphocytes – white blood cells (T cells, B cells, NK cells)
- Natural anti-tumour mechanism – to identify, infiltrate and attack solid tumours
- Highly potent & highly selective for cancerous tissue
- However, tumour microenvironment often ‘switches off’ natural tumour-killing function of TILs
- TIL therapy involves isolation and massive ex-vivo expansion of T cells from TILs before re-infusion into same patient
- Large influx of TIL derived T cells, plus pre- and post-conditioning therapy to dampen immunosuppressive environment and further expansion of TILs in-vivo results in significant and durable responses in melanoma patients:
 - ~ 50% overall responses of which many remain as durable responses
 - 10-25% probably “cured”

Blood – Cancer Specific

T-cells are very rare

Tumour - Cancer Specific

T-cells are enriched

Tumour - stained to show high levels of T-cells (in brown)
Correlate of Immune Cells with Outcome

- Is it cause and effect?
- What are they recognising?

In Vitro Activity of TIL

Overall 90% success rate in growing melanoma TIL
1. Surgery to remove tumour sample
2. Cut Excised Tumour into 2-3 mm pieces
3. Culture bulk tumour in plates + IL-2
4. T cells Expand 2-3 weeks
5. Rapid Expansion Protocol – 2 weeks
6. “Pre-conditioning Therapy” with Cyclophosphamide and Fludarabine
7. Safety and Numbers analysed in vitro
 • Cells Concentrated
8. Return cells to patient + supportive therapy with IL2

Evolving Treatment
◆ RR 1990 20%
◆ RR 2010 50-75%
• CR 20-25%
Historical TIL Studies

<table>
<thead>
<tr>
<th>Indication</th>
<th>Publication</th>
<th>Year</th>
<th>Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Melanoma</td>
<td>Dillman et al</td>
<td>1991</td>
<td>OR = 29%
CR = 5%</td>
</tr>
<tr>
<td>Melanoma</td>
<td>Rosenberg et al</td>
<td>1994</td>
<td>OR = 34%
CR = 6%</td>
</tr>
<tr>
<td>Renal</td>
<td>Goedegebuure et al</td>
<td>1995</td>
<td>OR = 50%
CR = 0%</td>
</tr>
<tr>
<td>Gastric</td>
<td>Xu et al</td>
<td>1995</td>
<td>OR = 35%
CR = 13%</td>
</tr>
<tr>
<td>Renal</td>
<td>Figlin et al</td>
<td>1997</td>
<td>OR = 26%
CR = 9%</td>
</tr>
<tr>
<td>Melanoma</td>
<td>Rosenberg et al</td>
<td>2011</td>
<td>OR = 56%
CR = 22%</td>
</tr>
<tr>
<td>Cervical</td>
<td>Stevanovic et al</td>
<td>2015</td>
<td>OR = 33%
CR = 22%</td>
</tr>
</tbody>
</table>
Considerations for Clinical Delivery of ACT

• Complex/Personalised so the efficacy bar will be high
• Need to comply with EU GMP regulations

Main attractions
 – Manipulate cells outside body – free from immunological controls
 – Short-term treatment
 – Long-term benefit

Main Drawbacks
 – Complex/Costly
 – Toxicity of supportive therapy
 • Pre-conditioning chemotherapy
 • Supporting Cytokines
 – Potential on-target toxicity

Practical Challenges
Developing GMP Cell Therapy Manufacturing

- Move away from classical clean rooms
- Provides a controlled sterile environment
- Protects patients cells from infection or contamination
- Allows rapid decontamination with vaporised hydrogen peroxide
- Allows multi product processing
- Closed Systems outside isolators
- REP entirely in WAVE bioreactors
Why Pre-Conditioning Chemotherapy?

- Effects on Tumour Microenvironment
 - Elimination of immune-suppressive cells
 - *For example* Treg, MDSC
- Enhances T-cell Engraftment
 - Increases homeostatic cytokines (IL7/IL15)
Schematic Representation of ACT process

Normal whole blood
- Monocytes (M)
- Lymphocytes (L)
- Neutrophils (N)
- Red blood cells (R)

After pre-conditioning chemotherapy
- M
- L
- N

Depletes White blood cells
- Fludarabine has a specific long term effect upon lymphocytes

Patients own Therapeutic TIL

Post TIL Therapy
- M
- L
- N
- R

TIL engraftment
- Manufactured TIL expand and make up a major compartment of the lymphocytes
Lymphocyte Recovery

Average Lymphocyte

- Days From Cells: -8 to 9
- Peripheral Blood Cell Count [Per mm³]: 0 to 2.5

Lymphocyte

- Days From Cells: -9 to 17
- Peripheral Blood Cell Count (per mm³): 0 to 7

Graphs showing the recovery of average lymphocytes and lymphocytes over time.
Practicalities of Therapy

- Admission
 - Median 16 days
 - Range 14 – 25
- On average 8 doses IL2 given
A straight forward case

Pre- Treatment Post-Treatment
Patients on B-Raf Inhibitors
TIL with B-Raf Inhibitor

Female, 60 yr

Received 3.67x10^{10}

Previously failed B-raf inhibitors, anti-PD1 and Ipilimumab

December 2014

September 2015
Long-term benefits in CTL TIL Therapy: *relapse/refractory melanoma*

- Globally > 500 patients treated
 - RR 40-70%
 - CR 10-25% - almost all durable ? cures

Responses

- OR 58%
- PR* 42%
- CR 16%

* Some may become CR
Key Outcome – Durable Responses
Is more intensive therapy better?

Goff et al., J Clin Oncol. 2016 Jul 10;34(20):2389-97

Overall Survival

Progression-Free Survival

Response rate 45% vs 62%
Complete Response Rate 24% vs 24%
What is happening in TIL Therapy?

• NCI – trials of combinations
 – Pembrolizumab
 – B-Raf inhibitors

• Lion Biotech
 – Testing NCI approach in multi-centre trials

• Netherlands/Denmark/(UK)
 – Randomized trial Ipilimumab vs TIL
What about other types of Melanoma?

Non-Synonomous Coding Mutations in Exome Sequences
NCI Data in Uveal Melanoma

7/21 patients responded
1 complete remission > 21 months
2 other PRs on-going

SS Chandran et al., Lancet Oncol 2017;18:792-802.
How do we plan to improve TIL?

- Rapid Isolation
- Refined Specificity
- Improved Expansion Process
- Cryopreservation / Improved Transport
- Enhanced Activity
- Improved Persistence
- Improved Safety

Second Generation TIL/ACT
Development of Next-Generation Products

- Focus is development of next-generation product
- Greater Efficacy
 - Focus on long-term benefits
- Improved Tolerability
 - Reduced need for toxic conditioning
Conclusions

- TIL therapy can be extremely effective and produce **durable** benefits
 - *May* be so effective because they target multiple antigens
 - A Key *may* be mutated / tumour **specific** antigens

- In principle active in range of solid tumours but process more complex
 - Processes can be standardised / automated

- Hopefully can become a standard therapy
 - *In principle* TIL harvest should be considered when patients are having surgery for metastatic disease

- **Future potential to engineer in novel activity to enhance activity**
Acknowledgements

Experimental Cellular Therapy Group
(David Gilham)
Vicky Sheard
Hannah Gornall
Vania Baldan

Clinical Cell Therapy
Fiona Thistlethwaite
Manon Evans
Shien Chow

Melanoma Group
Paul Lorigan
Jackie Hodgetts

Cellular Therapeutics Ltd
Ryan Guest
Nikki Price
Julie Duckworth
Natalia Kirilova
Holly Askew
Martine Thomas
Roy Cowell

John Bridgeman
Michelle LeBrocq

GMP TIL Harmonisation Team
Bianca Heemskerk - NKI-AVL
Joost vd Berg - NKI-AVL
Marco Donia - CCIT/Herlev Hospital
Inge-Marie Svane - CCT/Herlev
Ryan Guest - University of Manchester

Surgeons
Aali Sheen
Piotr Krysiak
Deemesh Oudit
Vijay Ramani

The Christie
NHS
NHS Foundation Trust

Contact Information

Medical Research Council

ATTRACTION
Advanced Teaching and TRaining for Adoptive Cell Therapy

ATTACK
Adoptively Engineered T-cell Targeting to Activate Cancer Killing